已知A B为椭圆x^2/4+y^2/3=1的左右两个顶点 F为椭圆的右焦点,
P为椭圆上异于A B点的任意一点 直线AP BP分别交直线l:x=m(m>2)
于M N点,l交x轴于C点
求 对任意给定的m值 求△MFN面积的最小值
高三数学市质检的压轴题,希望有人能解答。
??????????????
每个人答案都不一样?谁是对的呢?
已知A B为椭圆x^2/4+y^2/3=1的左右两个顶点 F为椭圆的右焦点
答案:5 mip版
解决时间 2021-01-08 12:09
- 提问者网友:你說、你愛我
- 2021-01-08 03:33
最佳答案
- 二级知识专家网友:久别无恙
- 2021-01-08 04:38
由图形的对称性,不妨设P点在上半椭圆。设P坐标为(x,y)
过P作PH⊥AB于点H。
那么PH=y,HA=x+2,HB=2-x,AC=m+2,BC=m-2
MC/PH=AC/AH
所以:MC=PH*AC/AH=y(m+2)/(x+2)
NC/PH=BC/BH
所以:NC=PH*BC/BH=y(m-2)/(2-x)
MC*NC=y^2(m^2-4)/(4-x^2)
点P在椭圆上,所以:3x^2+4y^2=12,4-x^2=4y^2/3 代入上式得:
MC*NC=y^2(m^2-4)/(4y^2/3)=3(m^2-4)/4
这个值与P点位置无关,当m是定值,它也是定值。
根据平均值不等式:
MN=MC+NC>=2√MC*NC=√[3(m^2-4)]
即MN的最小值为√[3(m^2-4)]
FC=m-1也是定值。
所以:△MFN面积最小值为(m-1)*√[3(m^2-4)]/2
当且仅当MC=CN时能够取到。
即:y(m+2)/(x+2)=y(m-2)/(2-x)
(m+2)/(x+2)=(m-2)/(2-x)=2m/4=m/2
x=(m-2)/2
即:当x=(m-2)/2时,△MFN取到最小面积(m-1)*√[3(m^2-4)]/2
过P作PH⊥AB于点H。
那么PH=y,HA=x+2,HB=2-x,AC=m+2,BC=m-2
MC/PH=AC/AH
所以:MC=PH*AC/AH=y(m+2)/(x+2)
NC/PH=BC/BH
所以:NC=PH*BC/BH=y(m-2)/(2-x)
MC*NC=y^2(m^2-4)/(4-x^2)
点P在椭圆上,所以:3x^2+4y^2=12,4-x^2=4y^2/3 代入上式得:
MC*NC=y^2(m^2-4)/(4y^2/3)=3(m^2-4)/4
这个值与P点位置无关,当m是定值,它也是定值。
根据平均值不等式:
MN=MC+NC>=2√MC*NC=√[3(m^2-4)]
即MN的最小值为√[3(m^2-4)]
FC=m-1也是定值。
所以:△MFN面积最小值为(m-1)*√[3(m^2-4)]/2
当且仅当MC=CN时能够取到。
即:y(m+2)/(x+2)=y(m-2)/(2-x)
(m+2)/(x+2)=(m-2)/(2-x)=2m/4=m/2
x=(m-2)/2
即:当x=(m-2)/2时,△MFN取到最小面积(m-1)*√[3(m^2-4)]/2
全部回答
- 1楼网友:臸釪樶初
- 2021-01-08 08:53
做任何数学题,画出图来就把题做出一半来了。
- 2楼网友:山河已春
- 2021-01-08 07:37
m给定则三角形的高为定值,因此我们只要求出MN的最小值即可。由对称性我们只考虑P在x轴上方
假设P(2cosθ,√3sinθ)(0<θ<π),A(-2,0),B(2,0)所以
PA方程为y=√3sinθ/(2cosθ+2)(x+2)
令x=m,yM=√3sinθ/(2cosθ+2)(m+2)
PB方程为y=√3sinθ/(2cosθ-2)(x+2)
令x=m,yN=√3sinθ/(2cosθ-2)(m+2)
所以yM-yN=√3(m+2)/sinθ最小值为√3(m+2)
当θ=π/2时取得最小值,即P点为(0,√3)时取得
而高为m-1所以面积最小值为√3(m+2)*(m-1)/2
- 3楼网友:他拾裏鰅妳
- 2021-01-08 06:45
思路及解题过程:三角形高FC定值=m-1,求MN的最小值即可,求出MN两点纵坐标之差的绝对值即为三角形的底,设P(2cos@, √3*sin@)M:(m,y1) N:(m,y2)
A、P、M三点共线,列出方程y1/(m+2)=(√3*sin@)/(2cos@+2); (1)
B、P、N三点共线,列出方程y2/(m-2)=(√3*sin@)/(2cos@-2); (2)
由(1)(2)得出MN=(y1-y2)的绝对值=√3*(m-2cos@)/sin@
上式对@求导,当导数为0,此时取得最小值,此时cos@=2/m,sin@= √1-4/m^2;
因此△MFN面积的最小值 =0.5*(m-1)* √3* (m-4/m)/(√1-4/m^2=0.5*√3* √(m^2-4)/(m-1),此时P点坐标:(4/m,√3*√(1-4/m^2))
思路并不难,做数学题尤其注意解题思路的培养,明确了解题方向一步一步的来,没有什么不可能,加油啊
你自己照着思路做一遍就有答案了啊,谁对说错依你的答案
- 4楼网友:注定要离开
- 2021-01-08 05:30
a(-2,0)b(2,0)c(m,0)f(1,0)
(1)pf‖l,于是xp=1,代入椭圆:yp=±3/2,即p(1,±3/2)
am为:x±2y+2=0
(2)设p为(x0,y0)
直线am为:y=y0(x+2)/(x0+2),m点:(4,6y0/(x0+2))
同理:n(4,2y0/(x0-2))
直线fm的斜率:2y0/(x0+2)
直线fn的斜率:2y0/3(x0-2)
而:2y0/(x0+2)*2y0/3(x0-2)=4y0^2/[3(x0^2-4)]
考虑到:x0^2/4+y0^2/3=1,即:4y0^2=12-3x0^2=3(4-x0^2)
于是:2y0/(x0+2)*2y0/3(x0-2)=-1
∴fm⊥fn
∴以mn为直径的圆过f点
我要举报
如以上问答内容为低俗/色情/暴力/不良/侵权的信息,可以点下面链接进行举报,我们会做出相应处理,感谢你的支持!
点此我要举报以上问答信息
推荐资讯