数学问题!!!!!!!(三角函数的问题)
- 提问者网友:西伯利亚狼
- 2021-05-15 08:22
- 二级知识专家网友:清和十五
- 2021-05-15 08:36
解:(1)∵f(x)=2sin(x+θ/2) cos(x+θ/2) +2√3cos (2x+θ) ^2-√3
=sin(2x+θ)+ √3[2cos(2x+θ) ^2-1]
=sin(2x+θ)+ √3 cos(2x+θ)
=2[1/2 sin(2x+θ)+ √3/2 cos (2x+θ)]
=2 sin (2x+θ+∏/3)
-1≤sin(2x+θ+∏/3)≤1
∴f(x)min= -2
f(x)max=2
(2) ∵θ=∏/3
∴f(x)=2sin(2x+2∏/3)
∵ f(x)≥1时
∴f(x)=2sin(2x+2∏/3) ≥1
∴sin(2x+2∏/3) ≥1/2
∴∏/6 +2k∏≤2x+2∏/3≤5∏/6+2k∏(k∈z)
-∏/2+2k∏≤2x≤∏/6+2k∏ (k∈z)
-∏/4+k∏≤x ≤∏/12+k∏ (k∈z)
故x∈[-∏/4+k∏≤x ≤∏/12+k∏] (k∈z)
- 1楼网友:此生不换的執著
- 2021-05-15 10:38
解:(1)∵f(x)=2sin[x+(θ/2)]cos[x+(θ/2)]+√3{[2cos(x+(θ/2))]^2-1}
=sin(2x+θ)+√3cos(2x+θ)
=2[sin(2x+θ)cos(π/3)+cos(2x+θ)sin(π/3)]
=2sin(2x+θ+π/3)
∴ f(x)max=2,f(x)min=-2
(2)当θ=π/3时,则f(x)=2sin[2x+θ+(π/3)]=2sin[2x+(2π/3)]≥1
即: sin[2x+(2π/3)]≥1/2
∴2kπ+(π/6)≤2x+(2π/3)≤2kπ+(5π/6),(k∈Z)
∴ kπ-(π/4)≤x≤kπ+(π/12),(k∈Z)
- 2楼网友:可惜感動不是心動
- 2021-05-15 09:45
(1)用换元法,把那()中的看成一个T都中了简化之后求最值
(2)把给的值找入(1)中化简的式子,解不三角等式就行
- 3楼网友:笑尽沧桑
- 2021-05-15 09:04
解:(1)f(x)=sin(2x+θ)+√3cos(2x+θ)
=2sin(2x+θ+π/3)
f(x)max=2,f(x)min=-2
(2)f(x)=2sin(2x+θ+π/3)=2sin(2x+2π/3)≥1
sin(2x+2π/3)≥0.5
2x+2π/3∈[2kπ+π/6,2kπ+5π/6]
x∈[kπ-π/4,kπ+π/12](k∈Z)